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One genomic and six cDNA clones for the replacement his-
tone H3.2 protein of alfalfa (Medicago sativa) were isolated
and sequenced. By gene organization they represent 3 distinct
genes. PCR methods were used to confirm that only three in-
tron-bearing histone H3.2 genes of this type exist per haploid
genome. They co-exist with approximately 56 copies of the
previously characterized replication-dependent, intronless his-
tone H3.1 variant gene. Comparison of the relative expression
of few constitutive H3.2 genes with the high S phase expres-
sion of the abundant cell cycle-dependent H3.1 genes by
mRNA levels and protein synthesis measurements revealed
that the replacement histone H3.2 genes are very highly ex-
pressed. Structural analysis of the genomic replacement H3.2
gene revealed a unique feature. A repeated polypyrimidine se-
quence motif in the 5’ untranslated region of this gene re-
places the ubiquitous intron present in all known replacement
H3 genes. A hypothesis is presented that this motif and other,
non-randomly distributed polypyrimidine sequences in the in-
trons of replacement histone H3 genes of alfalfa and
Arabidopsis, may affect nucleosome assembly. Chromatin re-
pression of these replacement genes would be avoided, consis-
tent with the high, constitutive expression of replacement H3
histone genes in plants.

KEY WORDS: Alfalfa, histone H3, intron, polypyrimidine,
replacement histone.

INTRODUCTION

Histone H3 is the central protein within the histone
octamer that organizes DNA into nucleosomes and,
with linker histones, into chromatin (Van Holde,
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1989). Study of chromatin in terminally differenti-
ated animal cells has revealed that a minor, cell
cycle-independent histone H3.3 variant progres-
sively replaces histone H3 proteins that were pro-
duced in a replication-dependent manner in cycling
cells (Zweidler, 1980). This replacement occurs
preferentially in transcriptionally active chromatin
(Ridsdale and Davie, 1987; Hendzel and Davie,
1990). These observations have suggested that tran-
scription of chromatin causes loss of nucleosomes,
that histone H3 from displaced nucleosomes is not
reused to restore chromatin packaging, and that
newly synthesized histone H3.3 supports formation
of nucleosomes and restoration of nucleosomal
density of chromatin in the absence of replication.
Recently, a distinct histone H3 variant has been
identified in alfalfa and several other dicot and
monocot plants that is characterized by a high level
of post-synthetic acetylation (Waterborg et al.,
1989; Waterborg, 1992) and a cell cycle-indepen-
dent pattern of expression (Kapros et al., 1992). A
study of the synthesis and stability of this H3.2 his-
tone variant in alfalfa has demonstrated that it is a
functional replacement histone, equivalent to his-
tone H3.3 in animals (Waterborg, 1993). In plants,
however, some aspects of the mechanism to main-
tain chromatin packaging appear distinct. The
steady-state level of replacement histone H3 protein
in plant chromatin is much higher than in animal
cells, especially comparing growing cell popula-
tions (Waterborg, 1991, 1992). Consistent with this
is the high rate and extent of histone H3.2 turnover
which has suggested that loss of nucleosomes dur-
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ing transcription of chromatin may occur at a higher
frequency in plants than in animals (Waterborg,
1993). To maintain the steady-state level of 30 to 40
percent replacement histone H3.2 protein in asyn-
chronously growing cell populations (Waterborg et
al., 1989; Waterborg, 1990), alfalfa cells must syn-
thesize the H3.2 protein at a very high rate.

In this paper, we describe the sequence analysis of
three intron-bearing histone H3.2 genes which pro-
duce twice as much histone H3.2 protein
(Waterborg, 1993) as the more than 50 other histone
H3 genes, previously detected in alfalfa (Wu et al.,
1988). We confirm by PCR analysis the high number
of replication-dependent, intronless H3.1 genes in
alfalfa, and show that the steady-state ratio between
the variant mRNAs directly determines the relative
rate of de novo histone H3 variant synthesis. Finally,
we present a comparison between the histone H3
variant genes in alfalfa and Arabidopsis. This analy-
sis suggests the testable hypothesis that plant re-
placement histone H3 genes may have the observed
high basal levels of expression because they are less
repressed by chromatin.

RESULTS

Isolation and analysis of alfalfa histone H3.2 cDNA

sequences

The two histone H3 protein variants of alfalfa
(Waterborg et al., 1989; Waterborg, 1992) differ
only by 4 amino acids (Waterborg, 1990). This re-
sults in cross-hybridization between the coding se-
quences of the single partial cDNA clone for histone
variant H3.2, pH3c11, isolated prior to the start of
this project, with all histone H3.1 cDNA clones, iso-
lated from the same library, named LUCA (Wu et al.,
1989). However, the 3'UTR (untranslated region) se-
quences of H3.1 clone pH3c1 and H3.2 clone
pH3c11 provide histone H3 variant-specific hy-
bridization probes (Kapros et al., 1992). By using
both probes to rescreen the LUCA library, we identi-
fied, among 100,000 transformants, 66 positives for
H3.1 and 33 positives for H3.2. This ratio resembles
closely the relative level of the histone H3 variant
proteins (Waterborg, 1990, 1992). Plasmid DNA was
prepared from all positives for H3.2 and the DNA
sequences for the six clones with the longest inserts
were determined by double-stranded sequencing
with. primer walking along both DNA strands. These
results with identified or putative sequence elements
are shown in figure 1.

Including the previously isolated cDNA, pH3c11,
three distinct classes could be identified on the basis
of 3'UTR sequence repeat differences, supported by
single residue heterogeneity at 7 sites. None of these
differences affected the histone H3.2 protein se-
quence. The only heterogeneity within classes was
the location of polyadenylation. Plasmid pH3c11 is
the only representative of class I. It used the previ-
ously identified AAUUGAA polyadenylation signal
sequence at 188 bp beyond the stop codon (Wu et
al., 1989). Class Il plasmids pH3c110 (GenBank ac-
cession number U09460), pH3c118 (U09461),
pH3c126 (U09462) and pH3c130 (U09464) are
characterized by a direct 12 bp repeat at 167 bp be-
yond the stop codon. Class lll plasmids pH3c127
(U09463) and pH3c131 (U09465) contain the result
of an apparent recombinational event that did not
change the length of the 3'UTR but that resulted in a
repeat of 3’UTR sequences 99-108 and 135-148 as
124-133 and 110-123, respectively. This event cre-
ated a direct 25 bp tandem repeat between se-
quence positions 1444 and 1493. Plasmids
pH3c126 of class Il and pH3c131 of class Il start
their polyadenylation prior to the signal sequence
used by all other H3.2 cDNAs. They may have used
a second plant polyadenylation consensus sequence,
GAUG-AA (Wu et al.,, 1989; Mikami and Ilwabuchi,
1993), located at or just upstream of the start of
polyadenylation. Alternatively, an 8 bp inverted re-
peat sequence that might form a GT-hyphenated
hairpin structure of unknown significance, might be
involved (Fig. 1).

The 5’UTR sequences of class Il pHc110 (55 bp)
and pH3c118 (41 bp) clones contained a direct 17
bp repeat in a GAG-interrupted series of polypyrimi-
dine sequences. The presence of these elements
could not be confirmed for class | and Il histone
H3.2 genes because pH3c11 plasmid was incom-
plete (Wu et al., 1989), and because the longest ana-
lyzed class Ill clone, pH3c131, contains only 18 bp
upstream sequence (Fig. 1).

Isolation and analysis of one alfalfa H3.2 gene

Screening of 60,000 recombinants in a genomic li-
brary of M. sativa cv. Chief with histone H3 variant-
specific hybridization probes (Kapros et al., 1992)
yielded 30 positive plaques. Direct phage DNA se-
quencing of 10 isolates with a sense primer, com-
mon between known H3.2 and H3.1 sequences
(nucleotides 963-982 in Figure 1) (Wu et al., 1988,
1989), identified a majority by codons 87 and 90 as
histone H3.1 variant genes (Waterborg, 1990).
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Isolate msH3g1 (GenBank accession number
U09458) produced a histone H3.2 variant-specific
sequence at these codons. Combination of the sense
sequencing primer with an anti-sense primer (nu-
cleotides 1520-1500 in Fig. 1), specific for the
3’UTR of H3.2 variant sequences (Wu et al., 1989),
produced a 558 bp PCR product only with msH3g1
DNA, predicting the presence of an intron in this
H3.2 gene. Primer walking confirmed the presence
of this and two additional introns—after codon 23,
in codon 49 and after codon 79—and produced 0.5
kb upstream and 0.3 kb downstream sequence (Fig.
1). All introns contain consensus splice junctions
with PyNPyPyPuAPy higher eukaryote branch-site
consensus sequences (Lewin, 1994), upstream of the
3’ junctions. Comparison with the three cDNA
classes identified the msH3g1 H3.2 gene as class |,
only differing at wobble positions of codons 44 and
114 between Chief and Regen S. alfalfa cultivars. A
search for putative regulatory consensus sequences
(Tabata et al., 1987; Dalton and Wells, 1988;
Chaboute et al., 1993; Ohtsubo et al., 1993) re-
vealed a typical regulatory plant histone nonamer
and octamer sequence, two CCAAT boxes, three AC
boxes, typical of histones genes, and a consensus
TATA box and transcription cap site, 103 and 40 bp
upstream of the start codon, respectively (Fig. 1). The
5’ terminus of pH3c110 coincided with the preferred
start position in the cap site, and, thus, pH3c110 is a
complete cDNA.

Determination of the number of histone H3 variant
genes in alfalfa

Combinations of sequencing primers were utilized
in PCR reactions to determine the number of his-
tone H3.2 genes in the alfalfa genome. Genomic
DNA produced 3 PCR products of distinct size but
nearly equal amounts (Fig. 2A) with primers be-
tween sequence positions —-184 and +33, relative
to the start of translation (Fig. 1). The intermediate
size product was identical to that produced from
class | genomic clone msH3g1, as predicted (216
bp). The larger size product matches a class Il
gene, longer by its characteristic 17 bp 5'UTR re-
peat. The 190 bp PCR product suggests that the
third histone H3.2 gene, assumed to generate class
Il transcripts, has a shorter upstream sequence.
Whether this indicates a divergent 5’UTR or up-
stream sequence or a defined deletion, relative to
msH3g1, awaits sequencing of a class Il genomic
clone. These PCR results also demonstrated that

the short 5’UTR of these three histone H3.2 genes
of alfalfa is devoid of introns.

This analysis of histone H3.2 copy number is in-
dependent of the estimated size of the alfalfa
genome. However, it might miss H3.2 genes with
divergent sequences at the upstream PCR primer
site. Therefore, a second PCR method was used to
confirm the presence of 3 histone H3.2 genes. A
coding region primer at sequence position 496,
common for all histone H3 clones, was matched
with an antisense primer at position 1520, specific
for the 3’UTR of all H3.2 sequences (Fig. 1). All
three introns of genomic clone msH3g1 are lo-
cated between these primers. The intron-bearing
msH3g1 DNA and intronless pH3c110 cDNA pro-
duced the expected products of 1024 and 572 bp,
respectively (Fig. 2B). Genomic DNA gave a single
band of 1 kbp. This showed that all alfalfa H3.2
genes have introns, identical to msH3g1. Addition
of increasing amounts of the homologous
pH3c110 DNA as competitor in known molar ra-
tios, assuming a haploid genome size for alfalfa of
1.2 pg (Winicov et al., 1988), decreased the
amount of genomic PCR product. Equimolar
amounts of PCR product, based on ethidium bro-
mide fluorescence with correction for size differ-
ences, was obtained when 3 plasmid DNA
molecules were added per complete haploid al-
falfa genome (Fig. 2B). This confirmed that the ini-
tial, genome size-independent PCR method had
not missed any histone H3.2 genes.

Quantitative Southern analysis has been used in
the past to estimate that one haploid alfalfa
genome may contain 40 histone H3 genes, assum-
ing a genome size of 1.7 pg (Wu et al., 1988). This
is equivalent to 55 copies, using our genome size
value (Winicov et al., 1988). This estimate was
confirmed by competitive PCR with a sense primer
that started in codon 49 of all H3 sequences and
an antisense primer, specific for the 3’"UTR of his-
tone H3.1 clone pH3c1 and all known genomic
and cDNA H3.1 sequences (Wu et al., 1988,
1989). pH3c1A65 DNA, a derivative of pH3c1
with an internal 65 bp deletion, was designed to
produce a 272 bp PCR product. It was used in 24
to 379 fold molar excess as a competitor for his-
tone H3.1 variant genes in genomic DNA, which
gave the predicted 337 bp product. Five indepen-
dent titration experiments showed by equimolar
cross-over point calculations that alfalfa contains
56 £ 6 H3.1 genes per haploid genome (Fig. 3).
None of these contained introns.
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Figure 2 PCR-based determination of the number of histone H3.2 genes in alfalfa. Agarose gel electrophoretic separation of PCR prod-
ucts, in parallel to marker DNA fragments (M), visualized by ethidium bromide fluorescence and quantitated by densitometry of Polaroid
negatives. The size of the DNA size markers, in bp, is shown along the side. Template DNAs were cloned msH3g1 DNA (lanes 2 and 3)
and genomic DNA of M. sativa cv. Chief (lanes 1 and 4) alone, or with pH3c110 plasmid DNA as internal competitor in a molar ratio of 3
(lane 5), 5 (lane 6) and 50 (lane 7). Primer pairs were between nucleotide positions 299 and 515 (panel A) and between 496 and 1520

(panel B), as numbered on msH3g1 in Fig. 1.

Comparison of histone H3 mRNA levels and protein
synthesis rates

Previous studies have revealed that expression of
the histone H3.2 genes is cell cycle-independent,
as determined by relatively constant mRNA levels
in partially synchronized alfalfa suspension cul-
tures (Kapros et al., 1992). Moreover, the rate of
H3.2 protein synthesis is the same in exponentially
growing cultures and in cells, arrested in S phase
by hydroxyurea treatment (Fig. 4) (Kapros et al.,
1995). In contrast, histone H3.1 mRNA levels and
protein synthesis rates are high only in S phase
cells (Kapros et al., 1992, 1995). The rate of his-
tone H3.1 protein synthesis in growing cultures in-
creases from 40%, relative to the stable rate of

H3.2 protein synthesis, to 220% when increasing
numbers of alfalfa cells are collected and arrested
in S phase by hydroxyurea (Fig. 4). It should be
noted that the response of plant cells to treatment
with hydroxyurea is different from that in animals.
Inhibition of DNA replication does not lead to the
rapid destruction of existing histone mRNA and
cessation of histone protein synthesis which is seen
in animal cells. Plant histone transcripts lack the
3’UTR stem-loop structure of cell cycle-regulated
animal histones that is responsible for this feedback
response (Kapros et al., 1995).

Northern analysis of the histone H3 variant genes
has demonstrated for each of the variant H3 histone
mRNAs individually that changes in mRNA levels
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Figure 3 PCR-based titration of histone H3.1 genes in alfalfa. Panel A. Agarose gel electrophoretic separation of PCR products, visual-
ized by ethidium bromide. The molecular weight (M.W.) of the markers in lane M are shown along the side in bp. Competitive DNA tem-

plates were genomic alfalfa DNA and pH3c1465 plasmid DNA in

the molar ratios for lanes 1 to 5, shown in panel B in subpanels 1 to 5.

The predicted size of genomic and competitor DNA (‘standard’) for the set of histone H3.1 variant-specific primers is shown. Panel B.
Densitometric analysis of Polaroid negatives for lanes 1-5 of panel A. Panel C. Size-corrected ethidium bromide fluorescence of 337 bp
(line with solid circles) and 227 (broken line with triangles) PCR products were plotted on an arbitrary scale (moles) versus the log of the
molar ratio of the template DNAs. Five independent experiments are shown. The point of equimolarity is marked for each experiment by a

dotted line.

can occur when cells progress throught the cell
cycle in synchronized cultures or when growth con-
ditions are changed (Kapros et al., 1992, 1995). So
far, differences in hybridization probe efficiencies
for the two gene types has prevented a comparison
of the absolute  mRNA levels for the two proteins.
Inclusion of known amounts of in vitro transcripts of
both genes in Northern analysis has made it possi-
ble to determine the abolute levels of both mRNA
types and to correlate these with the observed rates
of protein synthesis. In hydroxyurea-treated cul-

tures, when both histone H3 variant gene types are
expressed (Kapros et al., 1992, 1995), the steady-
state level of H3.1 mRNA was 90 + 12 pg (n=4) per
ug of total cellular RNA. The level of H3.2 mRNA
was 65 = 14 pg (n=4). Thus, histone H3.1 mRNA
represented 59 = 4 % (n=4) of total H3 mRNA
when newly synthesized histone H3.1 protein was
60 + 7% (n=3) of total de novo histone H3 synthesis
(Fig. 4B). The relative level of mRNA, therefore, di-
rectly determined the relative rate of protein synthe-
sis for the histone H3 variant genes.
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Figure 4 Histone H3 variant protein synthesis. Reversed-phase HPLC elution of histone H3.1 (near 74 min) and H3.2 (near 76 min) vari-
ant proteins, prepared from alfalfa A2 cell suspension cultures in exponential growth (panel A) or from cultures treated with 10 mM hy-
droxyurea for 24 h (panel B) and incubated with tritiated lysine, is shown by absorbance of the eluate at 214 nm and the radioactivity,

determined by liquid scintillation counting, as cpm per 0.5 ml fraction.

DISCUSSION

Expression of H3.1 and H3.2 genes compared

The measured ratio between H3.1 versus H3.2 vari-
ant genes of 56:3 in alfalfa is remarkably different
from the observed relative amounts of steady-state
H3 variant proteins of 2:1 (Waterborg et al., 1989;
Waterborg, 1990), and even more different from the
relative ratio of 1:2 for de novo H3 variant protein
synthesis in exponentially growing alfalfa suspen-
sion cells (Fig. 4A) (Waterborg, 1993). To date, one
factor, the difference in cell cycle-dependent ex-
pressions of the H3 variants genes, has been identi-
fied as contributing to this difference. The
steady-state level of replacement histone H3.2
mRNA has been shown to be fairly constant and in-
dependent of cell cycle phases (Kapros et al., 1992,
1995). In contrast, the level of H3.1 mRNA rises in
S phase cells (Kapros et al., 1992) and drops sharply
upon completion of DNA replication (Kapros et al.,
1993), characteristic of a replication-dependent his-
tone. Considering the time required for alfalfa cells
to progress through S phase, relative to the total
length of the cell cycle (Kapros et al., 1992), one
would predict a three-fold rise, approximately, in
the level of histone H3.1 mRNA and in the rate of
H3.1 protein synthesis if all cells were in S phase.
Cell cycle arrest of alfalfa A2 suspension cells with
hydroxyurea approaches this condition (Kapros et
al., 1995) and was used to test this prediction.

Relative to the level of histone H3.2 protein synthe-
sis (Fig. 4), the level of H3.1 synthesis rose 2.2-fold.
The level of H3.1 mRNA and the rate of H3.1 pro-
tein synthesis both became 60 percent of the total
amount of histone H3 mRNA and of the total rate of
histone H3 protein synthesis (Fig. 4), respectively.
Under these conditions, when both variant gene
types are expressed, it is possible to compare their
relative levels of expression. The 56 active replica-
tion-dependent H3.1 genes in S phase cells make
60 percent of the total H3 mRNA and new protein.
Only 3 constitutive H3.2 genes produce 40 percent,
i.e. they appear to be more highly expressed by a
factor 14, on a ‘per gene’ basis. This does not trans-
late directly into a difference in the rate of gene ex-
pression. Analysis of mRNA stability of histone H3
variant transcripts has shown that, depending on
culture conditions and when measured under con-
ditions of inhibition of transcription by actinomycin
D, histone H3.2 mRNA is 3- to 5-fold more stable
(Kapros et al., 1995). This suggests that the tran-
scription rate of the 3 H3.2 genes is, on average, 5-
to 3-fold higher than that of the 56 H3.1 genes dur-
ing their active state of transcription in S phase
cells. We have no information yet on the possibility
that a fraction of the H3.1 genes are not transcribed,
or only inefficiently. However, even should this be
the case, our experimental evidence strongly sug-
gests that the rate of transcription of the 3 replace-
ment histone H3 genes of alfalfa is high.
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Arabidopsis thaliana contains 6 histone H3 genes.
Four histone H3 genes, represented by two histone
H3.1 genomic clones (Chaboute et al., 1987;
Chaubet et al., 1987), produce a single histone H3
protein, different only at residue 90 from alfalfa H3.1
(Waterborg, 1992), in a meristem-dependent and
presumably replication-dependent pattern of expres-
sion (Chaboute et al., 1993). Two tandemly linked
and intron-bearing histone H3-ll genes (Chaubet et
al., 1992) produce a histone H3 protein (Waterborg,
1992), identical to alfalfa H3.2 (Waterborg, 1990,
1992) in a meristem-independent pattern of expres-
sion (Chaubet et al., 1992). This apparent replace-
ment histone H3 is also highly acetylated
(Waterborg, 1992), supportive of its preferential as-
sembly into replacement nucleosomes within tran-
scriptionally active chromatin (Waterborg, 1993).
The steady-state level of the Arabidopsis replace-
ment histone H3 is 55 percent of total histone H3 in
proliferating cells (Waterborg, 1992). This, com-
pared with the gene numbers of replication-depen-
dent and -independent histone H3 genes, suggests
that the constitutive level of expression of the re-
placement histone H3 genes in Arabidopsis is high,
as in alfalfa.

Comparisons among replacement histone H3 genes
Replacement histone H3 genes have been character-
ized by two gene features, a cell cycle-independent
pattern of expression and the presence of introns
(Van Holde, 1989; Wells et al., 1989). Differences in
transcript polyadenylation, observed between re-
placement and replication-dependent histone types
in animals, are not characteristic for plants. All plant
histone genes, irrespective of their pattern of gene
expression, produce polyadenylated mRNA
(Chaboute et al., 1988, 1993; Wu et al., 1989).
Comparison of intron locations within known re-
placement histone H3.3 genes of animals (Table 1)
with those in alfalfa and Arabidopsis, the only plant

Table 1 Intron locations in replacement histone H3 genes

species from which genomic replacement histone
H3 genes have been cloned (Chaubet et al., 1992)
(Fig. 1), suggests a large evolutionary distance be-
tween these groups of genes and supports the notion
that each arose independently (Thatcher et al.,
1994). A comparison among the three plant replace-
ment H3 genes (Table 1) suggests that the initial gain
of 4 introns in the primordial plant replacement gene
has been followed by instances of loss, e.g., of the
5’UTR intron in the evolution leading to alfalfa.

The ubiquitous occurrence of an intron in the
5’URT of all other known replacement H3 genes, in-
cluding animals, suggests that it provides an essen-
tial function. By inference, one would expect to see
such a function retained in the alfalfa msH3g1 gene,
despite the loss of the 5’UTR intron. A distinctive se-
quence feature of the very short 5’UTR of the alfalfa
H3 replacement genes is an abundance of
polypyrimidine sequences (Fig. 1).

Repetitive polypyrimidine sequences have the po-
tential to form intramolecular triplex DNA structures
(Maher 111, 1992) and these could potentially affect
or regulate gene expression (Maher IlI, 1992; Sarkar
and Brahmachari, 1992; Firulli et al., 1994).
However, attempts to detect the occurrence of
triplex DNA in the full-length 5’UTR of pH3c110
cDNA plasmid by digestion of the excluded fourth
DNA strand by single-strand-specific nucleases has
consistently failed (results not shown).

Polypyrimidine sequences are found at a higher
than statistical frequency in the coding strand of the
msH3g1 gene, exclusively in non-coding sequences
(Fig. 1), and they are absent in the non-coding
strand. The same is true for the two Arabidopsis re-
placement histone H3 genes (Chaubet et al., 1992).
This localization and asymmetry is remarkable in the
light of the existence of ubiquitous polypyrimidine-
binding proteins (Kolluri et al., 1992; Desjardins and
Hay, 1993; Morris et al., 1993), such as GAGA fac-
tor in Drosophila melanogaster (Lu et al., 1993), that

Species H3 gene Intron locations? GenBank
Homo sapiens (man) H3.3 5'UTR 42(3) 94(1) M11353, X05854
Gallus gallus (chicken) H3.3 5'UTR 42(3) 94(1) M11392, M11393
Drosophila melanogaster H3.3 5'UTR 94(1) X81207
Drosophila hydei H3.3 5'UTR 94(1) X81208
Medicago sativa H3.2 24(1) 49(3) 80(1) u09458
Arabidopsis thaliana H3-11l #1 5'UTR 24(2) 49(3) 80(1) X60429
Arabidopsis thaliana H3-1I #2 5'UTR 24(2) 49(3) X60429

aThe information of intron positions was obtained from GenBank sequences, which are identified by their accession numbers. The intron position within coding sequences is defined as
the number of the codon that immediately follows the intron. Within brackets is shown the place within this codon which is the first nucleotide of the exon. The numbers of the codons

refer to the amino acid residues within the mature histone H3 protein.
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have the potential to exclude nucleosomes
(Tsukiyama et al., 1994; Wallrath et al., 1994) and
facilitate gene transcription (Lu et al., 1993;
O’Donnell and Wensink, 1994). This could be a fac-
tor in the constitutive, high basal level of expression
that was observed for these genes. Analysis of the
chromatin conformation of the alfalfa msH3g1 re-
placement histone gene is in progress to evaluate
this speculation.

MATERIALS AND METHODS

DNA libraries and procedures

The LUCA cDNA library, made available for this study, had been
prepared from somatic embryos of the RA3 line of Medicago sativa,
cv. (cultivar) Regen S. (Wu et al., 1989). The alfalfa genomic library,
purchased from Clontech Laboratories, was prepared from 18 day
post-emergence seedlings of Medicago sativa, cv. Chief. Histone
H3.2 variant clones were identified by standard colony and plaque
screening procedures (Sambrook et al., 1989) by hybridization with
the Pvull-Hindlll 3’'UTR (untranslated region) sequence of pH3c11, a
partial cDNA for alfalfa histone H3.2 (Wu et al., 1989), which has
been shown to be histone variant gene specific (Kapros et al., 1992).
All hybridization probes were labeled by random priming of purified
plasmid DNA fragments with the digoxigenin Genius system, follow-
ing procedures recommended by Boehringer, and detected by
chemiluminescence with CSPD (Tropix). DNA sequences were de-
termined by Sequenase 2.0 double-strand sequencing with DMSO
for plasmids (Seto, 1990; Schuurman and Keulen, 1991) and by a
modified protocol for phage DNA (Manfioletti and Schneider, 1988).
Initially, sequencing primers were designed from the pH3c11 se-
quence (Wu et al., 1989), and subsequently from newly acquired se-
quences.

Polymerase chain reactions

Polymerase Chain Reactions (PCR) for histone H3 variant genes
were performed on alfalfa genomic DNA, prepared from RA3 cal-
lus cultures of M. sativa cv. Regen S., as described before (Winicov
et al., 1988), and from sprouted seeds of M. sativa cv. Chief, kindly
provided by Agrigenetics Research, by the O-ethylxanthic acid
method described by Jhingan (Jhingan, 1992a, 1992b). Optimized
PCR conditions for the MJ Research Minicycler with primers for hi-
stone H3 gene copy determinations and for mapping of the up-
stream region of the H3.2 gene were 10 mM Tris.HCI, pH 8.3, 50
mM KCl, 0.2 mM of 4 dNTPs, 3.5 mM MgCl,, with 10% (v/v)
DMSO as a specificity enhancer (Mody and Paul, 1990; Smith et
al., 1990) and Amplitaq Tag DNA polymerase (Perkin Elmer), for
30 cycles of 45 sec 92 °C, 45 sec 58 °C and 45 sec 72 °C. Plasmid
ph3c1A65 was created as an internal standard for gene copy titra-
tion of the H3.1 gene by linearizing H3.1 cDNA plasmid pH3c1
(Wu et al., 1989) with EcoRV, directed removal of 65 bp by nucle-
ase Bal 31 and religation.

Quantitation of histone H3 transcript levels

Run-off transcript RNA (570 n) for histone H3.2 was produced by
SP6 polymerase transcription in the Promega Riboprobe Gemini II
System of plasmid pH3c11A5’, linearized at the single Munl re-
striction site, very close to the polyA tail. Plasmid pH3c11A5" was
produced by digestion of pH3c11 DNA with BamHI and Styl and
religation. This removes a polyG sequence, a result of the cDNA
cloning procedure (Wu et al., 1989). Run-off transcript for histone
H3.1 (600 n) was produced from Hindlll-linearized pH3c1A5’
DNA, derived from pH3c1 by deletion of the BamHI-BsaAl frag-

ment. Dilutions of these standard RNAs between 5 and 200 pg,
based on absorbance at 260 nm, were co-electrophoresed in a
single formaldehyde agarose gel (Sambrook et al., 1989) with
samples of 12 pg total RNA, as determined by absorbance at 260
nm, prepared from alfalfa A2 suspension cell cultures as de-
scribed elsewhere (Kapros and Waterborg, 1995). Northern analy-
sis was performed with digoxigenin-substituted histone H3
variant-specific hybridization probes, prepared from equal-sized
dimers of the 3’UTR sequences of plasmids pH3c1 and pH3c11,
as described elsewhere (Kapros et al., 1994). Hybridization was
quantitated by densitometry of films after chemiluminescent de-
tection of digoxigenin with CSPD (Tropix) (Kapros et al., 1995).

Histone H3 protein synthesis

Alfalfa A2 suspension cell cultures in exponential growth or cul-
tures enriched in S phase cells by growth for 24 h at 10 mM hy-
droxyurea (Kapros et al., 1995) were incubated for 1 h with 0.125
mCi of L-[4,5-3H]lysine (102.4 Ci/mmol) (New England Nuclear)
in 50 ml growth medium. Histone proteins were extracted from
cells and fractionated by reversed-phase HPLC, as described pre-
viously (Waterborg, 1993). The rate of de novo synthesis of the
separated peaks of histone H3.1 and H3.2 variants was deter-
mined from the amount of radioactivity incorporated per amount
of protein absorbance at 214 nm in the HPLC eluate.
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